An Asymptotic Result for the Path Partition Conjecture
نویسندگان
چکیده
The detour order of a graph G, denoted by τ (G) , is the order of a longest path in G. A partition of the vertex set of G into two sets, A and B, such that τ(〈A〉) ≤ a and τ(〈B〉) ≤ b is called an (a, b)-partition of G. If G has an (a, b)-partition for every pair (a, b) of positive integers such that a + b = τ(G), then we say that G is τ -partitionable. The Path Partition Conjecture (PPC), which was discussed by Lovász and Mihók in 1981 in Szeged, is that every graph is τ -partitionable. It is known that a graph G of order n and detour order τ = n − p is τ -partitionable if p = 0, 1. We show that this is also true for p = 2, 3, and for all p ≥ 4 provided that n ≥ p(10p − 3).
منابع مشابه
On the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملWiener Way to Dimensionality
This note introduces a new general conjecture correlating the dimensionality dT of an infinite lattice with N nodes to the asymptotic value of its Wiener Index W(N). In the limit of large N the general asymptotic behavior W(N)≈Ns is proposed, where the exponent s and dT are related by the conjectured formula s=2+1/dT allowing a new definition of dimensionality dW=(s-2)-1. Being related to the t...
متن کاملThe Path Partition Conjecture is true in generalizations of tournaments
The Path Partition Conjecture for digraphs states that for every digraph D, and every choice of positive integers λ1, λ2 such that λ1 + λ2 equals the order of a longest directed path in D, there exists a partition of D in two subdigraphs D1,D2 such that the order of the longest path in Di is at most λi for i = 1, 2. We present sufficient conditions for a digraph to satisfy the Path Partition Co...
متن کاملProof of Berge's path partition conjecture for k ≤ λ - 3
Let D be a digraph. A path partition of D is called k-optimal if the sum of the k-norms of its paths isminimal. The k-norm of a path P ismin(|V (P)|, k). Berge’s path partition conjecture claims that for every k-optimal path partition P there are k disjoint stable sets orthogonal to P . For general digraphs the conjecture has been proven for k = 1, 2, λ − 1, λ, where λ is the length of a longes...
متن کاملThe Path Partition Conjecture is true for claw-free graphs
The detour order of a graph G, denoted by (G), is the order of a longest path in G. The Path Partition Conjecture (PPC) is the following: If G is any graph and (a, b) any pair of positive integers such that (G)= a + b, then the vertex set of G has a partition (A,B) such that (〈A〉) a and (〈B〉) b. We prove that this conjecture is true for the class of claw-free graphs.We also show that to prove t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 12 شماره
صفحات -
تاریخ انتشار 2005